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I n  this paper a theoretical model of the motion of isolated buoyant elements in 
turbulent surroundings is introduced, which takes into account both the growth 
due to turbulent entrainment and a loss of buoyant fluid to the environment. On 
dimensional grounds the outflow velocity is taken to be constant and proportional 
to some characteristic turbulent velocity in the environment, while the entrain- 
ment velocity is proportional to the upward velocity of the element. Numerical 
solutions of the resulting non-dimensional equations of motion are presented, 
corresponding to a wide range of stabilities. Typically, an element in stable, 
neutral or moderately unstable surroundings at first grows and then is eroded 
away, but a t  a certain value of a stability parameter y elements become absolutely 
unstable and continue to grow and rise indefinitely. The value of y is extremely 
sensitive to  the level of turbulence in the environment, which could therefore 
cxert a controlling influence on the growth of buoyant elements in unstable 
conditions; large elements are more likely to grow when the level of turbulence 
is low. 

Laboratory experiments have been carried out in order to test one of the 
predictions of this theory, the form of the dependence of the height attained on 
total buoyancy and level of turbulence in uniform surroundings. The agreement 
is good, and numerical comparison of theory and experiment suggests that  the 
assumed outflow velocity is of the same order as, but somewhat less than, the 
r. m. s. turbulent velocity. 

1. Introduction 
I n  previous discussions of the motion of buoyant elements or parcels rising 

through the atmosphere, two rather different theoretical models have been used. 
I n  both of them the mixing with the surroundings has been found to have an 
important effect on the motion, though this mixing is supposed to occur in 
different ways in the two cases. 

The first type of theory has considered a turbulent element or ‘thermal’ 
moving through still surroundings (see, for example, Morton, Taylor & Turner 
1056; Scorer 1057). In  this case the mixing is due entirely to the motions within 
the element which are produced by the action of buoyancy forces, and the growth 
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of the turbulent region by incorporation of external fluid is taken into account. 
Dimensional arguments lead to the result that the radius of thermals will increase 
linearly with distance, which also implies that the entrainment velocity is every- 
where proportional tao the upward velocity. This has been verified by laboratory 
experiment over a wide range of stability conditions in the environment. 

The second method of approach, due originally to Priestley (1953), regards the 
buoyant element as a region of constant size, or ‘open parcel’, which is inter- 
changing fluid with its surroundings a t  a rate governed by the level of turbulence 
in the environment. I n  the shear layers near the ground, turbulence produced 
nearly independently of the motion of buoyant elements will certainly have an 
important influence on the motion, and the neglect of this effect in the thermal 
model is certainly a matter ‘of mathematical convenience rather than physical 
belief’ (Priestley 1960). Open parcels can lose momentum and buoyancy to their 
surroundings, at a rate which depends on their size, and elements can be shown 
to behave differently in the same environment merely because of a difference 
in size. 

Both these types of theory therefore have features which one feels should be 
included in a proper description of buoyant motion in turbulent surroundings, 
but both omit other important facts. The idea that mixing into a turbulent 
element takes place a t  a rate proportional to the scale of mean velocity seems well 
supported in still surroundings; it is equally certain that there will be some 
removal of buoyant fluid in turbulent surroundings. The open parcel model 
allows for the outward flux in a realistic way for elements of fixed size in which the 
turbulence can be regarded as part of the environmental turbulence, but it there- 
fore at the same time makes the inflow no longer dependent on the velocity of the 
element. Another disadvantage is that, although the mixing rate depends on 
size, there is nothing in the theory which indicates how the appropriate size 
should be chosen, or how it may vary with time. 

Each of these theories could of course still be relevant a t  a different stage of the 
history of a single element. When its velocity is high, the environmental turbu- 
lence will be relatively unimportant and the thermal model would be appropriate, 
and when the turbulent velocities inside and outside are comparable, something 
like an open parcel will be necessary. One approach to the problem of describing 
the whole motion would be to make a superposition of the two separate theories, 
and this is in fact the method used by Priestley ( I  956) in his theory of bent-over 
buoyant plumes. 

I n  this paper we shall set down a comparable theory for buoyant parcels, but 
one which includes the whole history of the motion in a single formulation. The 
model to be discussed attempts to combine those features of the previous theories 
which seem physically the most real, and considers explicitly the changes in size 
produced by the competing processes of entrainment and the removal of fluid 
to the environment. Solutions will be presented for the instantaneous point 
source of buoyancy in turbulent surroundings having neutral and constant stable 
and unstable lapse rates, though the method could equally well be applied to 
finite sources and more general environments. 
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2. Description of the model 
The present model is based on an extension of the picture of a thermal provided 

by laboratory experiments in still surroundings (e.g. Woodward 1959), and these 
observations will therefore be described in more detail. The mean motion inside 
and around a thermal is instantaneously very like that of a slightly flattened 
spherical vortex, and in fact this idea has been used explicitly by Levine (1959). 
The size is increasing with distance, however, so the streamlines are not closed, 
and external fluid enters the moving region. The fluid entering over the advancing 
front mixes vigorously with the buoyant fluid in the thermal, because of thc 
unstable density gradient set up there, whereas that entering from the rear flows 
in more smoothly. 

It is customary to define the size of a thermal in terms of the envelope con- 
taining all the original material of the thermal, but i t  is preferable for our purpose 
to use a definition based on the field of motion. At any instant there is a definite 
volume of fluid moving with the vortex, and we shall use the radius of the equi- 
valent spherical vortex as a measure of the size at any height. At the turbulent 
front its boundary probably coincides with the edge of the buoyant material, but 
at the rear not all the advancing fluid is necessarily buoyant. The difference 
between these definitions is a minor one in still surroundings, but it becomes 
important when the environment is turbulent. 

External turbulence will spread out the boundary between buoyant and non - 
buoyant fluid in such a way that it is no longer sharp, and some fluid originally in 
the thermal will escape into the environment. We shall consider this process in 
more detail below, but it is already clear that a definition of the edge based on the 
buoyant material would not be very satisfactory. It will still be true to say, 
however, that at any time there is a definite volume of fluid having a vortex-like 
circulation which is moving upwards with mean velocity dzldt = w say. The size 
of this vortex or its radius b may again be used to specify the size of the element, 
and it is the region within which the turbulence is governed by the effect of the 
buoyancy forces and the upward motion. We will retain the assumption that 
there is an inflow into this region at a rate proportional to the mean velocity w, 
and use the same numerical value for the entrainment constant a. 

The removal of fluid from the element must now be specified in terms of a 
parameter which describes the environmental turbulence and does not depend 
on the interior motion. There seems to be no mechanism whereby internal 
turbulence can influence the diffusion beyond the boundary as it has been defined; 
some sort of ‘erosion’ by the environmental motion will be necessary to carry 
fluid away. We shall make a new assumption which is very similar to that on 
which the entrainment idea is based, namely, that the outflow velocity uo is 
proportional to some velocity specified by the turbulence in the environment, 
say the friction velocity u* in a shear layer, or the root-mean-square turbulent 
velocity (2):. This is suggested by dimensional reasoning rather than any 
detailed picture of the flow, and its validity must be tested experimentally. It 
can perhaps be made more plausible by considering the following mechanistic 
description of the motion of particles of buoyant fluid which escape from the 

1-2 



4 J .  S .  Turner 

edge of the element. To be removed permanently a particle only needs to be 
moved sideways a short distance, to a streamline of the mean motion which does 
not enter the rear of the thermal, but which may lie only a small fraction of a 
radius from the boundary over a considerable part of its area. It is relevant 
therefore to consider the form of the diffusion law for short times, and in this 
range the turbulent particle velocities may be taken as nearly constant. If the 
‘edge ’ of the element could be regarded as a fixed source (which did not reabsorb 
fluid once it had been emitted) then the velocity of spread of particles from this 
source would be just the root-mean-square turbulent velocity; this should there- 
fore be an upper limit to the efflux velocity from the edge. 

I n  a constant stress layer in neutral surroundings u* and (uT)h are by definition 
constant, and they probably vary little with height over a considerable range of 
stability conditions (Panofsky & McCormick 1960). We shall assume that the 
velocity of outflow u0 remains exactly constant with height always. The resulting 
equations of motion are similar in form to those used by Priestley, except that the 
dependence of mixing rates on element size is slightly different, and is included 
explicitly in the present formulation. 

3. The derivation of the equations 
Let the mean (potential) density within the element, regarded as a sphere of 

radius b, be p(z), and that of the undisturbed environment be p,(z) at height z .  
Although the transition between buoyant and non-buoyant fluid will no longer 
be sharp, as discussed above, it seems reasonable to assume that buoyant fluid 
which escapes into the environment and gets left behind will quickly become so 
diluted that it will have a negligible effect on the properties of the environment. 
The stability conditions in the environment will therefore be unchanged with 
time and they may be specified by the parameter G = - (g/pl) dp,/dz where p1 is 
some reference density, say that a t  the height of the (virtual) source of the 
thermal and g is the acceleration due to gravity. The sign of G has been chosen to 
agree with an earlier definition; G is positive in stable, zero in uniform and 
negative in unstable surroundings. 

Following Morton et a l .  (1956) the equation of continuity of mass may be 

written as cl 
~ ($7rb3) = 4nb2(azo - u,), (1) 

where b and to have already been defined, a is the entrainment constant and the 
second term on the right arises because of the new assumption that fluid is being 
removed from the element a t  a rate proportional to the surface area and to the 
characteristic velocity u,. This is taken to be constant with height, even in 
conditions where the atmosphere is stably or unstably stratified. Equation (1) 
may immediately be integrated to give 

dt 

b-bo = az -U, t ,  ( 2 )  
where b = b, when z = 0 and t = 0. This reduces to the condition for a linear 
spread b = ax in the case where b, = 0 and u,, = 0. Note that the existence of an 
outflow velocity always implies that the size of the element is less than predicted 
using the entrainment assumption alone. 
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With the same assumption about the inflow and outflow velocities, the 
momentum equation may be written 

a 471 
- (+b3pzu) = - - b3g(p0 - p )  - 4nb2u0 WP. 
at 3c 

(3 a,) 

This form implies that momentum equal to the mass flux times the mean velocity 
is being carried across the edge of the element by the fluid which leaves it, but 
that the fluid which enters from the surroundings has no mean upward momen- 
tum. The factor C is a virtual mass coefficient, introduced to take into account 
the acceleration of the fluid outside the ' edge ' of the element which is also being 
set into motion by the buoyancy forces. For definiteness we shall take C = +, 
which is the value appropriate to a spherical vortex of constant size, and the 
equation ( 3 a )  becomes a 

- (b3w)  = $b3A - 3b2u0 W ,  
at (3) 

where A = g(pO - p ) / p l ,  and density variations are taken to be small. Equation (3) 
thus takes some account of the motion in the environment near the element, 
although the main features of the behaviour should not be very sensitive to the 
exact form adopted. 

Similarly the equation of continuity of density deficiency may be put into the 
form 

which can be simplified with the use of (1) to give 
d(b3A) 
__ = - b3tl7G - 3b2u0 A. 

dt  (4) 

It will be convenient to use the equations ( l ) ,  (3) and (4 )  with the dependent 
variables b, M = b3u1 and F = b3A to determine b, w and A as functions of time, 
and then to find the height z froni ( 2 ) .  M is proportional to the momentum and P 
is related to the total buoyancy F* by F* = +rF. Three boundary conditions are 
required to define the solution; following Morton e t  ul. we shall consider the case 
where b and 111 are zero a t  t = 0 and F is finite = F,. Buoyant elements started 
off in other ways can often be thought of as arising from a virtual source some 
distance below the real source. 

Using the three governing parameters provided by the problem, Po which is 
proportional to the buoyancy released initially, G describing the stability of the 
environment, and u0 the characteristic velocity specifying the turbulence in the 
surroundings, the following transformations have been chosen to reduce the - 

equations to a simple non-dimensional form: 
b = ( @ ) & F ~ U ; % ~ ,  

M = $( ' ;~~)&P;U<~TYL,  
p = F o f ,  

t = ($a): Fiu,+, 

where b,, wz, f ,  7, z1 and y are a complete set of non-dimensional variables. 



6 J .  8. Turner 

The equations (1)  to (4) become 

and the boundary conditions are b, = 0, x, = 0, rn = 0 and f = 1 at r = 0. The 
non-dimensional parameter y = -$ocCPblu~ is a measure of the relative im- 
portance of buoyancy, density stratification and turbulence for the motion. 
An idea of the magnitude of the entrainment constant may be obtained from 
experimental results for the rate of spread in still surroundings, where it is about 4, 
and this value will be retained here. 

Numerical solutions of the set of equations (6) will be presented in the following 
sections. These were begun from the initial conditions b, = 0, m = 0, f = 1, z ,  = 0 
at r = 0 using a starting series, and continued using a standard Runge-Kutta 
routine on the University of Sydney computing machine SILLIAC. Solutions 
have been obtained for a suitable range of the parameter y ,  positive and negative, 
t.0 test the effect of stability on the character of the motion. A wider range of' 
solutions, for example starting with a finite radius and small velocity, can readily 
be obtained with little extra effort, but those which are presented here seem the 
most appropriate to illustrate the physical ideas which are being introduced in 
this paper. 

4. The motion in neutral surroundings 
First, the solutions with y = 0 will be presented in detail. This corresponds to 

the case of an adiabatic atmosphere, in which the buoyancy released initially and 
the turbulent velocity in the surroundings are the only factors on which the 
motion can depend. 

In figure 1 are shown b,, z,, A, and wl (where A, and ull are the non-dimensional 
equivalents of A and w) plotted against time, and in figure 2 ,  b,, A, and w, plotted 
against the non-dimensional height zl. At first the motion within the element is 
dominant, and it spreads out, while A, decreases because of the dilution and 715 

decreases because the increasing momentum is distributed in a larger mass of 
h i d .  Soon the effect of the removal of buoyant fluid becomes apparent: the rate 
of increase of radius decreases and a t  a non-dimensional height of x, = 0.350 the 
radius achieves its maximum value of b, = 0.218. At this height the inflow and 
outflow velocities are equal and 713 = 1.  Thereafter the solution suggests that the 
turbulence inside the element is less important than that in the eiivironnient : 
the element is eroded away, until at x, = 0.51 approximately the radius becomes 
zero and the element has disappeared. This last part of the solution is the most 
difficult to defend physically, and an alternative procedure will be discussed in the 
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next section. Reverting to the dimensional solution (5) and inserting the above 
numerical values and a = & we have therefore 

b,,, = o.o89P;u21.,1 

x = 0*57Ftu,l (7) 
zmax = 0 . 8 3 F ~ ~ ~ ~ .  7 at 

and 

These cannot be used for numerical prediction until a more definite meaning 
can be assigned to u,,, but they do show how the size of buoyant elements can 
depend on the buoyancy and the environmental turbulence. 
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FIGURE 1 .  Non-tlimcnsional radius O,, height zI, velocity w1 and density tliffercnce A,, 
plotted against tiime T for a buoyant clement starting with finite buoyancy and zero initial 
radius, rising through a turbulent cnvironmcnt. 

A definite prediction arising out of this model, which is independent of the 
exact meaning of uo ,  is that the horizontal scale of the buoyant elements should 
increase to a maximum at a certain height and then begin to decrease again. 
At the maximum, the ratio of diameter to height above the virtual origin will be 

2b ?zh, 
z z1 

= 0.31, - - .~ __ 

using our numerical values. 

5. The use of Briestley’s model 
The feature of the above solution which is perhaps most open to criticism is its 

continuation into the region where the radius is decreasing. At lower heights thc 
model does seem to allow realistically for the growth of elements, when the 
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turbulence within them is more important than that in the environment, but the 
opposite case, with environmental turbulence dominating, is more questionable. 
As an alternative, we might suppose that when the inflow and outflow velocities 
have become equal, the turbulence inside the element has the same intensity as 

0.6 

0 5  

0 4  

03 
21 

0 2  

01 

VTGITIX 2. Non-dimensional radius, velocity and density difference plotted agrainst height 
for tho same conditions as in iigure 1. 

that in the environment, and can thereafter be regarded simply as part of the 
environmental turbulence. 

This is the case discussed by Priestley (1953), and we can therefore use his 
results for the open parcel of constant size, taking as our initial conditions the 
radius, velocity and density difference at the height where the radius has its 
maximum. We have formulated the equations slightly differently, but they can 
easily be put into the form used by Priestley, for the general case of a linear lapse 
rate of any magnitude. 
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When b, = b, = const., dbJdr  = 0 and the last two equations of (6) may be 
written as 

where ut, and A, have been defined as the non-dimensional representations of 
velocity and density difference. These are now in the form given by Priestley, 
with his ‘mixing rates’ k, for momentum and k ,  for heat replaced by 

k ,  = k, = 316,; 

in his formulation these were proportional to b;8. Priestley’s solution shows that 
in our case elements are absolutely unstable if y 
less than this, the elements will come to rest at a height given by 

Sib: but that for values of 

the subscript m refers to conditions at the height at which 6, achieves its maximum 
value b, in our previous solution. As we saw earlier, w,, = 1. 

More will be said about this after the results of the solution of (6) have beeii 
presented for stable and unstable environments. For the present, we should 
remark that in neutral surroundings an element continuing to rise in the manner 
suggested by Priestley will travel a further distance zp  = 0.115 with its radius 
constant, to a final height of z1 = 0.46. This should be compared with the height 
z1 = 0.51 predicted in our earlier calculation where the size was allowed to  
decrease. 

6. The solutions in stratified surroundings 
Solutions of (6) have been obtained for a range of values of y between & 200, 

and the radii are plotted as a function of height in figure 3. Over this range of 7, 
all solutions behave like that with y = 0 up to z1 = 0.25. With increasingly 
negative y, corresponding to more stable conditions, the elements achieve a 
smaller maximum radius, and come to rest a t  lower heights. The practical 
iniportance of the stable case is of course questionable, since only rarely could a 
steady turbulent state be maintained under these conditions; the environment is 
more likely to be still, and this corresponds to the limit of infinite y with zero u,, 
for which the height has been shown (Morton et al. 1956) to be proportional to 
3’8 G-i. When y is small and positive, or the environment is just unstable, the 
niasimum size and the final height increase. At a value of y of about 145, the 
behaviour changes markedly. When y is larger than this elements increase in 
radius without limit, and they do not come to rest a t  a finite height. This condition 
for absolute instability is equivalent to that arising from Priestley’s solution, 
since again it may be expressed as yb2, 3 9. (This might be expected since the 
borderline case with b, constant corresponds to the same pair of equations which- 
ever formulation is used.) 
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This transition between markedly different behaviours occurs over only a 
small range of values of y. This parameter is, by its definition y = -$aGF,/u& 
a measure of the relative importance of buoyancy, the density gradient in the 
environment and the mixing rates; it is especially sensitive to the turbulent 
velocity in the surroundings. The results shown in figure 3 suggest that the whole 

0 4  

bl  
PICURE 3. Showing dependoiice oftho growth of buoyznt elements in turbulont surroundings 
on tho stability parameter y = -~aCI”,,,’ti~; positivo values of y correspond to  uiistablc 
environments. Tho non-diinmsional t’ime T at which given z1 and b, arc at>taincd may also bc 
obtained from this diagram using T = 2 ,  - b, (oqtmtion ( 2 ) ) ,  and this is illustrated for t,\vo 
points on t>he curves. 

character of the motion of buoyant parcels could be dominated by small changes 
in environmeiital turbulence. For example the ability of individual buoyant 
parcels to reach the condensation level could be governed by the wind speed, 
through its influence on the magnitude of the turbulent velocities. 

The modification suggested by Priestley’s solution may again be applied to the 
results, using (10). In  all stable cases, and in unstable environments up to the 
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critical case of y = 145, the final height may be obtained by this method, and the 
results are compared in figure 4 with the corresponding heights shown in figure 3. 
Between y = - 200 and y = + 110 the 'eroding' parcel achieves the greater 
height', and from y = 110 to 145 the parcel which continues with constant 

Maximum radius 

O J  I I J 
- 200 - 100 0 100 200 

Y 
FIGURE 4. Comparison of the final heights attaincd by buoyant elements using the' eroding ' 
modcl and Prirstley's results. Also shown are the maximum radius and the height at which 
this is attained as a function of the stability parameter. 

radius does; the differences are not large. One other difference is that Priestley's 
solution predicts an oscillation of the elements about their final height in stablc 
surroundings, with an asymptotic approach to the final height, whereas our 
solution shows a single approach to this height at a finite time. 

Also shown on figure 4 are the maximum radius as a function of y ,  and the 
height at which this is achieved. Both of these vary only slowly with y, and the 
prediction made in equation (8) will be little changed by stability, provided of 
course that the limit y N" 145 is not exceeded. 

7. An experimental test of the theory 
The theoretical results have all depended on our basic assumption of a constant 

outflow velocity uo, and it is desirable to check that this assumption is not widely 
at variance with experimental fact. A laboratory experiment has been devised 
which allows one prediction of tjhe above theory to be tested directly, namely, the 
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form of the dependence of the ‘final height’ on buoyancy and turbulent velocity 
in uniform surroundings (equation (7)). This experiment also allows an approxi- 
mate comparison to be made between the deduced outflow velocity uo and the 
properties of the turbulence in the experimental tank. 

The production of a deep constant-stress layer in the laboratory is difficult, so 
we have chosen another experimental situation to which the theory should be 
directly applicable. Experiments have been carried out in a large tank of water 
in which approximately isotropic turbulence was produced by agitation. At first 
the necessary stirring was effected by dragging a grid of cylindrical bars through 
the tank. This method would have the advantage that the properties of such grid 
turbulence-even the absolute intensity-are well known from wind-tunnel 
experiments, but it was found difficult to carry out in a stationary tank without 
introducing at the same time a large scale circulation. Instead, a regular array 
of sixteen jets was placed on the bottom of the 3 ft. x 3 ft. tank, and streams of 
large air bubbles blown from them up through the tank. Between the streams of 
air bubbles and the water dragged up by them countercurrents were formed, and 
when the air supply was turned off these jets broke down to give nearly homo- 
geneous and isotropic turbulence. 

This turbulence was of course decaying, and by carrying out convection 
experiments a t  various times during the decay it was possible to cover a wide 
range of turbulent intensities. The buoyant material used was coloured salt 
solution, with various densities so that we covered in all a range of total buoyancies 
of about a factor of six. This was released from the top of the tank with zero 
momentum by overturning a hemispherical cup 6 em in diameter. Between 
successive experiments the tank was allowed to settle until any remaining motion 
was small. Air was bubbled for a fixed time at a standard rate, and the (arbitrary) 
zero of time taken as the instant when the air was turned off. 

The behaviour of the buoyant element in a turbulent tank can be described as 
follows. Immediately it is released the characteristic vortex-like circulation is 
set up, and the element begins to spread out as it mixes with the surroundings; 
in addition it leaves a trail of marked fluid behind it. What we see visually as the 
‘edge’ of the marked fluid depends, however, on the intensity of dye, which 
merges gradually into the surroundings. This is not the same as the dynnrrzicnl 
edge which we have defined in this paper, and for this reason it is not easy to test 
the behaviour of the radius as a function of height. It is much simpler to follow 
the position of the vortex-like circulation as it movcs through the tank, since 
our impression of this depends partly on the dye and partly on the motion. 
The final height z,,, is taken to be the height at which this ordered motion 
is lost in the random motions; at this time the size of the ordered region is dc- 
creasing. I n  spite of the subjective element in this measurement we believe 
that the height can be recorded to the nearest 6 em. The time of attaining this 
height is also noted; this is required in order to define the state of decay of turbu- 
lence in the tank, and not for comparison with the theoretical time of rise, so 
the slow approach of the elements to their final height does not lead to serious 
errors. 

The state of the turbulence in the tank can easily be related to the time nf 
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decay as follows. I n  the initial period, which will certainly be the relevant one 
here, the turbulent energy decays according to the law 

(11)  
- 

(u”)-’ = C 2 ( t  - to) 

w h e r e 2  is, say, the mean-square turbulent velocity in one direction and to is the 
virtual time a t  which the energy is infinite. The value of to, like the constant of 

80 1 I I I 

I 
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FIGURE 5. Showing experimental values for the’ final heights’ attained by buoyant elements 
in turbulent surroundings, plotted against tho function F$(t- to)* of the total buoyanvy F* 
and the decay time ( t - t o )  which is suggested theoretieally. The symbols refer to thr 
followingvalues ofF* ( ~ m ~ s e c - ~ ) :  x 970,. 1380, 0 1940, 25G0, A 2910, + 3920, 5900. 

proportionality c2, must be determined experimentally. Using this expression, 
and assuming that uo is proportional to (.”) g) the relation we wish to test becomes 

x,,,cc E”2(t- t0)k (12) 

Note again that t specifies the state of the turbulence, not the time during which 
convection is taking place. If an experiment is begun a t  time t,sec after the 
arbitrary origin of time and ends a t  t,, then we take t = &(tl + t2 ) .  During any 
one experiment the effects of decay were probably not serious, since t ,  - t ,  was 
usually about i t  or less. 

The results of over a hundred individual experiments are plotted in figure 6. 
Each point represents the average of five runs under identical conditions, and the 
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different symbols refer to different total buoyancies. In  order to plot the results 
in this form a value has to be assigned to to, and the one used, to = 6 see, has been 
chosen to give the best straight line fit to the experimental points. This process at 
the same time, and without further adjustment, gives a reasonable value for the 
position of the virtual source, at about three times the cup diameter above the 
water surface. Small changes in t, change the position of the virtual source 
slightly without altering the slope of the fitted straight line significantly. 

The fact that the experimental points are all grouped closely about a straight 
line when plotted in this way shows that our basic hypothesis, that the outflow 
velocity is constant and proportional to the r.m.s. turbulent velocity in the 
environment, has led to a prediction which is consistent with experiment, at least 
over the limited range of the variables F* and u, available to us. Our experiments 
do not of course provide a critical test of the suggested mechanism of mixing, but 
if other models were to lead to a different prediction, these could be tested against 
the present formulation by replotting the data of figure 5 in an appropriate form. 
If  we use instead of F* the variable F, defined in 3 3 by F! = $rF,, then the 
measured slope of the line fitted in figure 6 gives the relation 

zmax = 0*57F$(t -to)*. (13) 

The final step, a quantitative comparison between (7) and (13), can only be 
carried out provided the constant c in (11)  can be assigned, i.e. provided the 
absolute value of the turbulent velocity under the conditions of the experiment 
can be measured. This has been done in a subsidiary experiment carried out in the 
tank under identical conditions of turbulence, but without the buoyant element. 
Small plastic markers slightly denser than water were allowed to fall slowly 
through the turbulent tank, and photographed at intervals of 1 see. From their 
successive positions in the interval t = 15-35 sec a value of G2 for the sideways 
motion was computed; it was found to be within 10 yo of 1.0 em2 s e r 2  at the 
mean t = ?Osee. 

Substituting (u")t = 1.0 and (f-f,) = 15 in (11)  gives c = 0.36. Thus (13) may 
be rewritten in the form 

Zmax = 2 . @ ( 2 ) - & .  (13n)  

Finally, if we identify the final height measured with that predicted theoretically 
and called zmss in ( 7 ) ,  we obtain the relation between the two velocities 

u, z 0.4(2)3. (1.2) 

8. Discussion 
The experiments reported above seem to give good support to our theoretical 

results in a uniform environment. The form of the dependence of the final height 
on the buoyancy and the state of the turbulence is well represented, and the 
numerical value of the deduced outflow velocity is reasonable, of the same ordcr 
of magnitude but rather less than one component of the root-mean-square 
tiirbulent velocity in the surroundings. Since the final height is a quantity which 
depends on the whole history of the element, and there are no arbitrarily chosen 
parameters (apart from a, on which the predicted height depends only weakly), 
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this good agreement may be regarded as an encouraging overall test of the theory. 
We can now proceed more confidently to examine the consequences of the same 
assumptions in stratified surroundings, although here unfortunately an experi- 
mental test is impracticable. 

The most important result revealed by this analysis seems to be the extreme 
sensitivity of the buoyant motion to the level of environmental turbulence, as 
exhibited in figure 3, and this should remain a t  least qualitatively true even if uo 
is not strictly constant with height. Not only quantitative, but qualitative 
changes in the motion take place over a narrow range of values of the stability 
parameter y = -$aGFo/ut and therefore over an even narrower range of thc 
velocity uo. For values of 71 less than 145 the motion comes to rest a t  a finite 
height, whereas for values greater than this elements are absolutely unstable. 

We can obtain from this limiting value of y an estimate of the critical initial 
buoyancy which will lead to absolute instability in atmospheres having unstable 
lapse rates (compare with Priestley's 1953 estimate of a critical element size). 
Let us suppose for example that ($)a = 25 ern see-I so that uo is about 10 em sec-'. 
For the range of potential temperature gradients covered by Priestley (i.e. 

Potential temperature gradient lo-' 10-G 10-2 
"C em-l 

B'* ( ~ m ~ s e c - ~ )  1014  1013 1012 1011 101" 109 
C'omputed radius r (metres) 220 100 46 22 10 44 
Priestley's R (metres) 1500 250 40 8 1; d 

TABLE 1 

10-7 OC/cm, which exceeds the dry adiabatic rate by only a small fraction of its 
value, to 10-~°C/cm, quite a strong lapse rate) we can compute approximate 
minimum values of F* necessary for instability, and these are shown in table 1. 
Also shown are computed values of the radius of the elements of critical size, 
assuming they are spherical and have a temperature difference from their sur- 
roundings of 1 "C. Priestley's results are also shown for comparison, though the 
two sets are not strictly comparable. 

The sizes suggested by this example are of the same order as those given by 
Priestley, though the range is smaller. The present formulation seems to have the 
advantage that the effect of a change in turbulent velocity in the surroundings is 
exhibited more directly; everything else being equal, the critical radius will be 
proportional to uj. 

Finally, let us estimate from the laboratory results the height to which parcels 
of warm air should rise in uniform surroundings in a typical case under the 
opposing influences of buoyancy and environmental turbulence. Taking 
uo = 10 cmsec-I as before and using ( 7 )  we find that for F* z,,,, is about 
400 metres, which is again a physically realistic result. 

I am grateful to Mr P. K. Ball, Dr C. H. B. Priestley and Mr J. Warner for their 
helpful comments on an earlier draft of this paper. 
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